
Guoqiang Li 1,2

1Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, China.
2Lawrence Livermore National Laboratory, Livermore, CA 94550, USA

Mini workshop on BOUT++ and OMFIT

Oct. 7 2014, Livermore

Use CORSICA to Generate MHD Equilibrium

and how to do it in OMFIT

• Equilibrium is an important basis for BOUT++
simulation

• BOUT++ accepts three kinks of equilibrium: g-file, t-
file and .eqin file. It has some IDL/python tools to
convert those equilibrium files to grid-file

• CORSICA can generate and modify g-file and t-file

• In OMFIT, a simple CALTRANS module has been
developed. It actually wraps the BASIS scripts

Introduction

• CORSICA is an integrated modeling tool for equilibrium,
MHD stability, transport/heating/CD

• Developed at LLNL

• Corsica runs on GA clusters and hopper on nersc

• http://wormhole.ucllnl.org/caltrans/: download and
documentation

• This lecture will only talk about equilibrium part of CORSICA

What is CORSICA

http://wormhole.ucllnl.org/caltrans/
http://wormhole.ucllnl.org/caltrans/

 What is BASIS

• BASIS is an interactive script language, like python, IDL,
Matlab …

• CORSICA is wrapped by BASIS
https://wci.llnl.gov/codes/basis/

• Expressions are similar to FORTRAN

• Declare variables
• Variables must be declared before using

• integer, real, double, character, logical

• ‘list’ is very useful to get help information on names

• Has vector operations like F90

• Build-in plot functions and math functions

https://wci.llnl.gov/codes/basis/

$ caltrans
> real xx = (0:1.:11) # declare xx and set vaules
> xx
> list xx
> real yy=xx**2 # vector operation
> yy
> win # start a window frame
> plot xx
> plot xx*2., color=red, thick=5, style=dashed # overlay the xx**2
> nf # New framework
> plot yy,xx # plot yy vs xx
> quit

Exercise for BASIS

• Grad-Shafranov equation solver, 𝜓 poloidal flux

• CORSICA has both direct and inverse solver

• Inverse solver: (𝜓, 𝜃) coordinate, solve for
R, Z
• prescribed-boundary: the Grad-Shafranov

eq'n is solved inside a region specified by
two arrays (input) and the R,Z points
around the boundary

Equilibrium solver in CORSICA

Flux surface coordinate

• Direct solver: (𝑅, 𝑧) coordinate, solve for 𝜓
• free boundary: the separatrix (or limiter

plasma/vacuum boundary) is found as part of
the solution (i.e., output); but there are input
parameters to exert substantial control over
the boundary.

• Use pprime and Fprime to evaluate Jphi on R Z
grid

• run inverse solver to get J, then interpolate to
R, Z

• Solve on infinite domain with coils

Equilibrium solver in CORSICA (Cont.)

(R,z) coordinate

 Change the plasma shape

• Do this work with CORSICA direct solver

• First read a g-file equilibrium, then change the shape
• g-file is a community standard equilibrium file format, originally from EFIT

$ cd corsica-ex
$ caltrans
> read d3.bas # read in the predefined d3 sript
> d3(“g098128.02500”,0) # read in the g-file
 # d3 is an predefined function to reproduce
 direct equilibrium from DIII-D g-file
> win on
> layout(0,0) # generate a plot like one on previous page
> plot zls,rls,scale=equal # plot actual boundary
> zfbd = zfbd*0.9 # modify requested z boundary
> run # execute direct solver
> plot zls,rls,color=red
> weqdsk(“g”) # write out the new g-file

• “Dead start”: create an equilibrium from a small set of parameters
given in a text file.

$ caltrans

> read tokamak.bas # read in predefined script

> ds(“circ.inp”) # dead start with circ.inp file
> win

> layout(0,0)

> start_inv # convert to inverse equilibrium
> saveq(“circ_inv.sav”) # save the inverse equilibrium to a file

Create a circular plasma from
“dead start”

 Change the profiles

• Two profiles(P, [FF’, q, Jpar, Jt]) are required to determine an equilibrium

• teq_inv(inv_k, inv_p): # command to run inverse solver, inv_k: select
which two 1d arrays, inv_p select which scalar sets scale

$ caltrans cbm18_dens8_inv.sav # start CORSICA and restore an equilibrium

> win on
> plot psave, psibar # plot pressure vs psi

> psave = psave * 1.2

> teq_inv(0,0) # excute inverse solver
> plot psave, psibar, color=red

> nf

> plot jparsave, psibar
> real jedge = 0.002*exp(-((psibar-0.6)/0.025)**2)

 # define an edge current

> plot jedge, psibar, color=green
> jparsave = jparsave + jedge # change the parallel current

> teq_inv(3,0)

> plot jparsave, psibar, color=red
> shotName = “10000”

> shotTime = 1.0

> weqdsk(“t”) # Write the equilibrium to “t-file” (dskgato file)

Exercise of changing profiles

• At present, CALTRANS in OMFIT has two functions
• Read in g-file and convert it to new g-file, t-file, i-file

and .sav files

• Scan a sequence of equilibria by scaling the pressure
profile and running DCON to check the stability
boundary (beta limit)

Simple CALTRANS module in OMFIT
has been developed (by Meneghini)

• CORSICA is wrapped with BASIS. If we use python
to wrap the BASIS, it will lose some convenience
and functions.

• But BOUT++ does not need so many functions

• What BOUT++ needs in OMFIT:
• Refine and modify the equilibrium (increase the grid size,

change the shape and profiles)
• Visualize and compare the modified equilibria (develop

a tool to visualize the t-file or grid-file), give some
equilibrium global parameters

• Convert the equilibrium to grid-file

Some considerations

 Thank you

